Новости Электротехники 2(128)-3(129) 2021





<  Предыдущая  ]  [  Следующая  >
Журнал №2(38) 2006

ДИАГНОСТИКА ОПОР И ФУНДАМЕНТОВ ВЛ
СОВРЕМЕННЫЕ МЕТОДЫ ОЦЕНКИ

Электросетевое строительство в России активно велось с 60-х до середины 80-х годов прошлого столетия. В настоящее время нормативные сроки службы этих объектов заканчиваются. Отсутствие необходимых и достаточных инвестиций для реконструкции объектов электроэнергетики на протяжении последних 10-15 лет привело к накоплению больших объемов «отложенного спроса». В итоге существует крайне серьезная проблема: с одной стороны – огромное число объектов, требующих незамедлительной реконструкции исходя из нормативных сроков службы; а с другой стороны – отсутствие финансовых возможностей для ее выполнения.
Из вышесказанного следует однозначный вывод: необходимо отказаться от «тотальной реконструкции» в пользу «адресно-восстановительного ремонта» и «адресной замены» электросетевого оборудования и конструкций. Начальным этапом этой работы является диагностика конструкций ВЛ. Наряду с традиционными способами всё активнее начинают применяться современные методы диагностики, о которых рассказывают наши новосибирские авторы.

Юрий Гунгер, к.т.н., генеральный директор
Виктор Чернев, начальник отдела диагностики электрооборудования
Группа компаний «ЭЛСИ», г. Новосибирск

Целью диагностики является ранжирование оборудования и конструкций по их остаточным эксплуатационным характеристикам с разделением на 3 группы.
Первая из них представляет собой группу продления ресурса, которая включает объекты с нормальными остаточными эксплуатационными характеристиками, несмотря на окончание их нормативного срока службы.
Во вторую группу – «адресно-восстановительного ремонта» – входят объекты, остаточные эксплуатационные характеристики которых могут быть восстановлены в результате выполнения текущего или капитального ремонта.
Третья группа – «адресной замены» – состоит из объектов, остаточные эксплуатационные характеристики которых ниже нормируемых значений и не могут быть восстановлены в результате выполнения ремонта.
В последние годы широкое распространение получили различные методы диагностики электрических аппаратов, как наиболее дорогостоящих и ответственных элементов электрической сети. Также разработаны и внедряются в эксплуатационную практику методы диагностики электрической части воздушных линий (ВЛ) и подстанций (ПС) – проводов, контактных соединений и изоляции. На этом фоне единственным широко распространенным способом диагностики механической части ВЛ и ПС – опор, стоек под оборудование и фундаментов остаются внешние осмотры, регламентируемые правилами эксплуатации электроустановок. К сожалению, внешние осмотры не могут рассматриваться как сколько-нибудь серьезный способ диагностики, так как такие конструкции наряду с видимыми дефектами могут иметь и скрытые [1]. При этом, учитывая массовость этих элементов в составе любой электрической сети, вероятность возникновения аварий из-за повреждения механической части отдельных конструкций достаточна высока.

Общие методы испытаний бетонных опор ВЛ

На наш взгляд, проблеме диагностики механической части ВЛ и ПС, находящихся в длительной эксплуатации, следует уделять более серьезное внимание. Опыт показывает, что диагностике должны подвергаться все железобетонные конструкции со сроком эксплуатации более 20 лет. Сейчас в России в эксплуатации находятся несколько десятков тысяч железобетонных стоек ПС и несколько сотен тысяч опор ВЛ с железобетонными фундаментами или центрифугированными стойками со сроком службы около 40 лет.
Следует отметить многопараметричность деструктивных процессов, снижающих несущую способность железобетонных фундаментов и стоек опор ВЛ в эксплуатации: это и воздействие грунтово-климатических факторов внешней среды, и влияние вибраций от действия ветровых нагрузок, и другие специфические, в том числе электрофизические, условия функционирования электросети. В настоящее время достаточно хорошо проработаны следующие методы испытания бетонов на прочность:
Метод стандартных образцов. Образцы кубической формы испытывают через 28 суток после изготовления, для чего они устанавливаются в пресс и нагружаются до разрушения образца.
Использование кернов, выбуренных из конструкции, которые испытываются подобно стандартным образцам под прессом.
Группа методов неразрушающего контроля (НК), основанных на измерении поверхностной твердости бетона.
Первый метод неприменим в эксплуатации. Использование второго метода проблематично, поскольку он ухудшает прочностные характеристики конструкций за счет выбуривания образцов из тела конструкции, а также из-за сложной технической осуществимости такой операции в полевых условиях.

Методы неразрушающего контроля

Более приемлемыми являются методы НК, такие как:
1. Метод пластической деформации, основанный на измерении размеров отпечатка, который остается на поверхности бетона после соударения с ней стального шарика (молоток Кашкарова).
2. Метод упругого отскока, заключающийся в измерении величины обратного отскока ударника от поверхности бетона (склерометр Шмидта).
3. Метод ударного импульса, регистрирующий энергию удара, возникающую в момент соударения бойка с поверхностью бетона.
4. Метод отрыва со скалыванием ребра конструкции, заключающийся в регистрации усилия, необходимого для скалывания участка бетона на ребре конструкции, либо местного разрушения бетона при вырывании из него анкерного устройства. 5. Метод отрыва стальных дисков.
6. Ультразвуковой метод, измеряющий скорость прохождения ультразвуковых (УЗ) волн.
Первые пять методов позволяют определить прочностные характеристики лишь поверхностного слоя бетона железобетонной конструкции, притом в одной точке, и это является их существенным недостатком.
Наиболее адекватным считается метод УЗ-контроля, поскольку в отличие от других методов он позволяет измерить интегральные параметры прочности. По технике проведения испытаний этот метод делится на сквозное УЗ-прозвучивание, когда датчики располагаются с разных сторон тестируемого образца, и поверхностное УЗ-прозвучивание, когда датчики расположены с одной стороны. Метод сквозного УЗ-прозвучивания позволяет, в отличие от всех остальных методов НК, контролировать прочность не только приповерхностных слоев бетона, но и всего объема бетона конструкции. Следует добавить, что современные приборы (УК1401, Пульсар, Бетон-32, УК-14П) позволяют измерять прочностные характеристики бетона с приемлемой точностью (8–10%) [2].
Основным преимуществом средств НК, основанных на использовании ультразвуковых методов оценки прочности бетона, является существование устойчивой зависимости параметров распространения ультразвуковых колебаний в бетоне от состояния его структуры, наличия и накопления в нём тех или иных дефектов и повреждений. Возникновение в структуре бетона любых дефектов, уменьшающих его прочность, соответствующим образом изменяет скорость и время распространения ультразвука в бетоне [3, 4].
Анализ обширного статистического материала, накопленного в ходе лабораторных и полевых обследований, выявил закономерности между ультразвуковыми и прочностными характеристиками. Они используются для получения комплексных оценок технического состояния конструкций, а самое главное, для заключения об их работоспособности в интересующем интервале времени.
Сравнивая методы УЗ-контроля с такими традиционными методами контроля (ТМК) технического состояния железобетонных конструкций, как молоток Кашкарова или Физделя, микроскоп Бринеля или лупа Польди, отметим главный недостаток последних: ТМК не обеспечивают выявление дефектов в бетоне на ранней стадии их появления и не позволяют получить количественные оценки развития этих дефектов во времени из-за большой погрешности получаемого результата. Относительная простота и дешевизна этих приборов и приспособлений ТМК являются их привлекательным преимуществом и объясняют причину их использования.
    
Фото 1. Дефектный железобетонный фундамент ВЛ 500 кВ


Фото 2. Состояние ранее отремонтированного фундамента


Фото 3. Дефектная железобетонная стойка ВЛ 110 кВ
Сопоставление результатов измерения прочности бетона, полученных на реальных железобетонных конструкциях разной дефектности с помощью УЗ-тестеров и ТМК, показывает, что их сходство наблюдается только для конструкций, не имеющих существенных видимых разрушений. Например, при оценке прочности бетона конструкции, имеющей трещину, традиционный метод может дать приемлемую оценку прочности, тогда как при использовании УЗ-прибора измерение укажет на наличие дефекта.

Не только прочность

Прочностные характеристики бетона являются очень важными, но не единственными параметрами, характеризующими надежность и работоспособность железобетонной конструкции. Появление по тем или иным причинам трещин в бетоне может вызывать коррозию арматуры и ослабление несущей способности конструкции изнутри. Оценка коррозионного состояния арматуры проводится электрохимическими методами путем ее поляризации от внешнего источника тока [5]. Сопротивления анодной и катодной поляризации арматуры в неповрежденном и поврежденном бетоне имеют существенные различия, которые и несут информацию о коррозионном состоянии арматуры.
А вот обобщенную оценку состояния всей железобетонной конструкции целиком (фундамента или стойки опоры) можно получить, используя только вибрационные методы диагностики, основаннные на анализе декрементов затухания механических колебаний низкой и высокой частоты, искусственно возбуждаемых в железобетонной конструкции. Между этими параметрами и состоянием бетона, арматуры и их сцеплением между собой существует определенная зависимость [6]. С появлением трещин на бетоне или коррозии арматуры их взаимодействие нарушается, что приводит к снижению несущей способности конструкции.

Ультразвук плюс вибрация

Наиболее эффективным современным средством контроля технического и коррозионного состояния железобетонных конструкций ПС и ВЛ является комплекс испытаний, использующий ультразвуковые и вибрационные методы оценки механических свойств, а также электрохимические методы определения коррозионного состояния арматуры и металлоконструкций ВЛ.
Для железобетонных конструкций, не имеющих видимых дефектов, комплексные и традиционные обследования имеют примерно одинаковые результаты и временные затраты. В случае, когда имеется скрытый дефект, традиционный способ его определить не может, даже в случае откопки конструкции из земли.
Несмотря на то, что комплексная диагностика является более детальной, при работе с конструкцией, находящейся в нормальном состоянии, она имеет сравнительно небольшие временные затраты (~7 минут). При диагностировании дефектной или даже аварийной конструкции временные затраты увеличиваются в два раза за счет повышенного объема виброконтроля (~14 минут). Традиционный способ при обследовании конструкции в нормальном состоянии с помощью склерометра позволяет уложиться в одну минуту. Однако в случае обследования дефектного фундамента или стойки опоры требуется их откопка (на глубину от 0,5 до 1,5 метров), что увеличивает временные затраты в три-пять раз (по сравнению с комплексной диагностикой).

Обследование фундаментов и опор ВЛ

Группой компаний ЭЛСИ совместно с НПП «Электрокорр» выполнены комплексные обследования фундаментов ВЛ 500 кВ в «Иркутскэнерго» и железобетонных опор ВЛ 110 кВ в «Новосибирскэнерго». В «Иркутскэнерго» по результатам обследований распределение фундаментов по группам выглядит следующим образом:
  • в группе продления ресурса фундаментов – 38%;
  • группа «адресно-восстановительного ремонта» содержит 62%, из них дефектных фундаментов, требующих срочного ремонта в течение 2006 года, – 19%, фундаментов, ремонт которых может быть выполнен в последующие годы, – 43%;
  • аварийных фундаментов обнаружено не было, поэтому в группе «адресной замены» фундаментов – 0%.
В «Новосибирскэнерго» выборочному обследованию подверглись центрифугированные стойки опор ВЛ 110 кВ, визуально находящиеся в наихудшем состоянии. Однако по результатам обследований распределение стоек по группам выглядит так:
  • группа продления ресурса содержит 84% стоек;
  • группа «адресно-восстановительного ремонта» составляет 8%;
  • группа «адресной замены» – 8%.

Основные дефекты

Причинами дефектов железобетонных фундаментов металлических опор являются:
  • активное вымывание цементного камня под действием кислой ржавой воды, образующейся из дождевой воды в сочетании с продуктами коррозии стальных стоек опор;
  • осыпание и отслаивание бетона и наполнителя, приводящие к оголению арматуры, что в дальнейшем ведёт к коррозии арматуры и потере прочности фундамента;
  • незащищенность «оголовника» фундамента от действия процессов «замораживания–оттаивания» влаги.
На обследуемых ВЛ 500 кВ было установлено, что 68% всех фундаментов уже подвергались ремонту «омоноличиванием» верхней части фундамента бетоном на глубину от 200 до 600 мм от верха фундамента, при этом подавляющая часть фундаментов отремонтирована на глубину 200 мм. В результате исследования деградации бетона фундаментов была уточнена оптимальная глубина ремонта фундаментов, которая составила 500–700 мм от поверхности грунта. Таким образом, ремонт на глубину 200 мм не имеет смысла и является, по сути, непроизводительным расходованием выделенных ремонтных ресурсов, так как три четверти от числа фундаментов, ранее подвергавшихся ремонту, вновь отнесены к дефектным. Этот факт говорит о необходимости поиска новых ремонтных составов и технологий, обеспечивающих требуемую прочность, большую морозостойкость, меньшее водопоглощение и более надежную адгезию со старым бетоном.
На фото 1 показано техническое состояние дефектного железобетонного фундамента ВЛ 500 кВ, а на фото 2 – ранее ремонтированного дефектного фундамента.
Причинами дефектов центрифугированных железобетонных стоек являются:
  • неплотно прижатые края опалубки, допущенные при изготовлении центрифугированных стоек, следствием чего явилось быстрое разрушение швов полуформ в эксплуатации. Этот дефект зачастую приводит к образованию больших сквозных дыр, оголению арматуры и образованию значительных трещин вдоль швов полуформ (фото 3);
  • повреждения, сколы, полученные при транспортировке и установке опор;
  • влияние на стойки опор грунтово-климатических факторов (образование на стойке опоры мелких и крупных трещин). Эти дефекты за время эксплуатации также способствовали снижению несущей способности конструкций, что подтверждается данными вибродиагностики.
Выводы

1. Необходимо вместо «тотальной реконструкции» вменить в практику планирования ремонта электросетевого оборудования локальный «адресно-восстановительный ремонт» и «адресную замену» дефектных элементов и конструкций. Этот подход позволит в рамках ограниченных финансовых и технологических ресурсов обеспечить экономически целесообразный уровень надежности электроснабжения потребителей.
2. Экономический эффект от предлагаемого метода получается за счет исключения из объемов тех опор и фундаментов, ремонт которых может быть обоснованно перенесен на поздние сроки.
3. Главным условием эффективного решения задачи минимизации затрат на ремонты являются достоверные оценки эксплуатационного состояния всех элементов и узлов линий электропередачи, полученные с необходимой точностью в результате применения современного диагностического инструментария.
4. Традиционные методы оценки технического состояния железобетонных электросетевых конструкций, использующиеся в настоящее время, не обеспечивают выявление дефектов в бетоне на ранней стадии их возникновения и не позволяют получить количественные оценки развития этих дефектов во времени из-за большой погрешности получаемого результата.
5. Наиболее исчерпывающую информацию об остаточном эксплуатационном ресурсе железобетонных и металлических стоек опор и фундаментов воздушных линий электропередачи дают оценки, полученные с помощью ультразвуковой, вибрационной и электрохимической диагностики состояния.

Литература

1. Правила технической эксплуатации электрических станций и сетей Российской Федерации / Мин-во топлива и энергетики РФ, РАО «ЕЭС России», РД 34.20.501 – 95. – 15-е изд., перераб. и доп. – М.: СПО ОРГРЭС, 1996. – 160 с.
2. Штенгель В.Г. О методах и средствах неразрушающего контроля для обследования эксплуатируемых железобетонных конструкций // В мире НК. – 2002. – № 2(16). – С.12–15.
3. Ботин Г.П., Попонин С.А., Тарасов А.Г. Ультразвуковой контроль состояния железобетонных стоек опор и фундаментов воздушных линий электропередачи / Материалы Первой международной научно-практической конференции «Линии электропередачи – 2004: Опыт эксплуатации и научно-технический прогресс». – Новосибирск, 20–24 сентября 2004.
4. Гунгер Ю.Р., Тарасов А.Г., Чернев В.Т. Ультразвуковой и вибрационный контроль состояния железобетонных стоек опор и фундаментов воздушных линий электропередачи // Электроинфо. – 2005. – № 11. – С. 40–43.
5. Розенталь Н.К. Электрохимический метод исследования коррозии стали в бетоне по поляризационному сопротивлению // Электроснабжение железных дорог / ЗИ: ЦНИИ ТЭИ МПС. – 1993. – № 2. – С. 14–19.
6. Гуков А.И., Чадин А.Б. Аппаратура диагностики опор. Вибрационный и электрохимический методы // Электрическая и тепловозная тяга. – 1981. – № 4. – С. 38–40.





Очередной номер | Архив | Вопрос-Ответ | Гостевая книга
Подписка | О журнале | Нормы. Стандарты | Проекты. Методики | Форум | Выставки
Тендеры | Книги, CD, сайты | Исследования рынка | Приложение Вопрос-Ответ | Карта сайта




Rambler's Top100 Rambler's Top100

© ЗАО "Новости Электротехники"
Использование материалов сайта возможно только с письменного разрешения редакции
При цитировании материалов гиперссылка на сайт с указанием автора обязательна

Segmenta Media создание и поддержка сайта 2001-2024